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Abstract

Satellite overhead imagery can be easily acquired and

shared. The integrity of these type of images cannot longer

be assumed, due to availability of sophisticated classical

and machine learning based image manipulation tools. In

this paper we proposed a deep learning based method for

detecting and localizing splicing manipulations in overhead

images. Our method uses recent advances in anomaly de-

tection and does not require any prior knowledge of the

type of manipulations that an adversary could insert in

the satellite imagery. We compare our method against ro-

bust satellite-based manipulation detection approaches. We

show that our proposed technique outperforms all previous

methods, especially in detecting small-sized manipulations.

1. Introduction

The advent of satellites equipped with advanced imag-

ing technology has enabled the creation of companies and

military branches that rely entirely on overhead imagery.

Commercial vendors and research institutions offer access

to Earth observation imagery to the broad public [1, 2, 3].

These images can be forged as easily as any other image.

Consumer image and video editing software such as GIMP

and Photoshop, are capable of forging imagery which eas-

ily fools the human eye. This capability boost comes from

improvements in hardware, software and the machine learn-

ing field. Deepfake videos [4, 5] are the epitome of this

trend. Using machine learning open source software tools,

it is now easy for anyone to create believable face swaps

in videos that leave few traces of manipulation. Coupled

with a continuously increasing amount of digital content be-

ing shared online, disregarding the misuse considerations of

these image and video editing tools is not an option. Gov-

ernmental institutions across the globe are already assessing

Figure 1: Examples of overhead images containing spliced

objects and their corresponding splicing masks.

the threat posed by satellite image manipulation, especially

worrisome when done by a state-sponsored adversary [6].

Recent examples of satellite images that were manip-

ulated include those of the shot down Malaysia Airlines

Flight 17 [7] and nighttime flyovers of India during the

Diwali festivity [8]. The forensics community has de-

veloped methods for proving image authenticity and as-

sessing integrity [9, 10]. Some of these approaches fo-

cus on specific kinds of manipulation like splicing [11]

and detect them through image provenance analysis [12].

Other methods have been designed to spot local manip-

ulations generated by a generative adversarial networks

(GANs) [13, 14, 15]. However, many state-of-the-art foren-

sic methods are not efficient if blindly applied to overhead

image analysis [16, 17, 18]. This is due to the fact that com-

mon image forensic methods are often developed for images

taken with consumer cameras [19, 20]. These images sig-
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nificantly differ from satellites images (e.g., different com-

pression schemes, post-processing, sensors, color channels,

. . . ). It remains an unresolved issue to verify the authen-

ticity of overhead images without prior knowledge of the

expected manipulations.

For this reason, it is urgent to develop forensic meth-

ods specifically tailored to analyze overhead images. In

this paper, we propose a new robust deep anomaly detec-

tion and localization method, targeting splicing manipula-

tions inserted in overhead images. Figure 1 shows exam-

ples of the kind of manipulations we expect to detect. In

our work, we assume that we do not have access to forged

images for training. Our method builds upon the findings of

Yarlagadda et al. [17] and leverages recent advances in the

anomaly detection field by Ruff et al. [21]. Our contribu-

tions for this paper are:

• The proposed approach significantly outperforms all

previously presented satellite manipulation detection

methods.

• By using anomaly detection techniques, we do not re-

quire access to any manipulated data for training.

• We introduce a new splicing detection function that

takes into account the statistical properties of satellite

data.

2. Related Work

The forensic community has designed several methods

for detecting various types of forgeries in images. Most of

these methods are designed for images captured using con-

sumer cameras and smartphones [22, 20, 23, 24]. Since

overhead images are captured using imaging sensors on-

board satellites, their acquisition process is quite differ-

ent when compared with images from consumer cameras.

These include unique post-processing techniques such as

orthorectification or multispectral color correction. The

used compression schemes also differ from those com-

monly found in commercial photography. To bridge this

gap, several methods to detect manipulations in satellite im-

ages have been proposed [25, 26, 17, 18].

In [26], Ho and Woon use watermarks to detect manip-

ulations in satellite images. While methods using water-

marks for assessing an image’s integrity are certainly ef-

fective, they are rendered useless if the watermark is not

inserted at image acquisition time by a trusted source. For

this reason, several methods have been proposed to detect

and localize splicing in satellite images in a blind scenario.

Yarlagadda et al. [17] use a one-class support vector ma-

chine (OCSVM) adversarially trained on patches from pris-

tine images to compress them to a low dimensional repre-

sentation. For testing, the trained OCSVM acts on a com-

pressed representation of patches coming from input im-

ages and classifies them as pristine or forged. Bartusiak et

al. [18] train a conditional generative adversarial network

(cGAN) on both pristine and forged images to detect and

localize forgeries. Despite the great results of this last ap-

proach, it requires examples of the forgeries for training.

Inspired by previous literature on blind satellite manip-

ulation detection and advances in anomaly detection, we

pose the splicing detection and localization problem as an

anomaly detection problem. By anomaly detection, we

mean the problem of identifying unusual samples in the

data. If we consider pristine overhead images to be our data,

then spliced objects in them are the anomalies to be detected

in the context of verifying their integrity. Many anomaly de-

tection have been proposed, these include supervised [27]

and semi-supervised approaches [28], or one-class neural

networks [29, 21].

The applicability of each of the previously mentioned

methods depends on the nature of the problem. In our

case, since we assume no knowledge about the nature of

the anomaly, both supervised and semi-supervised methods

are not applicable. Since our goal is to be able to design a

method that detects and localizes splicing using only infor-

mation from pristine satellite images, a one-class approach

seems to be the only viable solution. If we can model

pristine images as belonging to one class and all of forged

data (irrespective of the type of forgery) to belong to other

classes, then our task would be to build a one-class classifier

tailored to pristine data.

3. Proposed Method

We propose a deep one-class classifier that we name

satellite support vector data description (SatSVDD) and ex-

tends the model proposed by Ruff et al. [21]. Images are

split into patches and used to train an autoencoder, which

encodes them into a low dimensional space. Then, a sup-

port vector data description (SVDD) classifier is trained

jointly with the autoencoder to distinguish these low di-

mensional pristine encodings from encodings coming from

forged patches. Although our overall strategy is similar to

the one proposed by in [17], we empirically obtain better re-

sults, which we attribute to jointly training the autoencoder

and the SVDD classifier as opposed to doing it separately.

By doing so, the autoencoder is able to learn better latent

representations that are more suitable to the SVDD.

The main idea behind the proposed splicing detection

and localization method is to learn a compact representa-

tion of pristine data that captures the salient features of the

image acquisition process. Splicing pristine data will lead

to loss of some or all of the information of the image ac-

quisition process, hence its compact representation will be

very different from that of compact representation of pris-

tine data. To obtain this representation, we first train our

deep one-class classifier to extract an anomaly score from
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Figure 2: Overview of the training process of SatSVDD

each image patch. When an image is processed, we com-

bine all the estimated anomaly scores associated with the

image patches into a splicing mask and splicing score. We

provide details about the system training and deployment

below.

3.1. System Training

Given a training dataset of pristine overhead images, we

extract a set of overlapping patches at fixed resolution from

all of them. These patches are used to train our deep one-

class classifier following the two-step approach shown in

Figure 2:

1. An autoencoder is trained to reconstruct the pristine

image patches while simultaneously mapping them to

a low dimensional space.

2. An SVDD one-class classifier is jointly trained with

the encoder of the pre-trained autoencoder to obtain

the final compact representation.

Autoencoder. We use the architecture proposed by

Ruff et al. [21]. This is a convolutional autoencoder that

encodes the extracted patches into a low dimensional fea-

ture vector as indicated in Figure 3. The autoencoder can

be ideally split into two parts: an encoder that turns patches

into feature vectors and a decoder that turns feature vectors

into patches. This autoencoder is trained to minimize the

mean squared error (MSE) between a patch and the output

of the decoder.

Support Vector Data Description Classifier. We train

the one-class classifier jointly with the pre-trained encoder

as shown in Figure 4. The one-class classifier is chosen to

be a support vector data description (SVDD) [30]. SVDD is

a classifier related to the one class support vector machine

(OC-SVM) where a hypersphere is used to separate the data

instead of a hyperplane. SVDD works by minimizing the

volume of the hyperspace that encloses all of the compact

representations of the pristine patches. Specifically, SVDD

minimizes the loss function defined as

minR,c,ζ R
2 +

1

vn

∑

i

ζi

‖φ(xi)− c‖ < Rs + ζi and ζi >= 0

(1)
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Figure 3: Overview of the autoencoder training step
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Figure 4: Overview of the SVDD training step

Here φ refers to the encoder, R refers to the radius of the

hypersphere, xi refers to the i-th patch, ζi refers to the i-th

slack variable and v is a hyperparameter that controls the

trade off between ζi and R.

3.2. System Deployment

The testing pipeline is shown in Figure 5. Specifically,

we compute a splicing mask from the test image, then we

estimate a splicing detection score. Following we describe

these two steps.

Splicing Map Computation. We extract overlapping

patches from the image under analysis, as done during train-

ing. Then we test every extracted patch with the SatSVDD

model and get an output value for every patch, from now

on referred as anomaly score. The anomaly score indi-

cates, how similar the patch features are to the feature of

the patches used in training. The higher the anomaly score,

the more likely that the patch contains an anomaly. Using

the anomaly scores we construct a splicing mask.

To construct the splicing mask, we merge anomaly

scores obtained from all patches. Specifically, the splicing

mask is a 2D matrix the same size of the image under anal-

ysis. Each pixel of the splicing mask is the average of the

anomaly scores computed for all patches overlapped with

that pixel position in the analyzed image. Once this mask

has been estimated, to localize anomaly we use the same

method in [17]. First, we threshold each splicing mask to

obtain a binary mask. For each image and used thresh-

old, we compute: the true positive rate as the percentage

of forged pixels correctly detected and false positive rate as

the percentage of pristine pixels detected as forged. Based
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Figure 5: Overview of the testing process for manipulation detection and localization.

on these two values, we compute the ROC curves.

Detection Function. To detect whether an image con-

tains a forgery, we need to turn the splicing mask into a

detection value that can be compared to a threshold.

We consider spliced objects as anomalies and propose a

detection function to compute the scalar splicing detection

value from the splicing masks. Recall that an anomaly is de-

fined as a subset of data whose properties deviate from the

rest of the data [31]. In our problem, the splicing mask is

our data, and anomalies should be detected as splicing mask

values whose properties do not match the rest of the mask.

If our classifier is properly trained, it learns how to extract

some representative features of pristine patches. Therefore,

for patches that do not contain anomalies, it returns a low

anomaly score. Conversely, the classifier returns a high

anomaly score from patches containing anomalies. From

these two premises, we can expect that splicing masks be-

longing to images containing anomalies exhibit the follow-

ing properties:

1. The splicing masks have a high maximum value on an

absolute scale.

2. The maximum values of the splicing masks are higher

compared to the average splicing masks values.

3. Due to the high maximum anomaly score, masks have

a low normalized standard deviation.

The first property only takes into account one mask pixel at

a time. The second and third properties take into account

every pixel of the mask. The detection function proposed

in [17] makes use of the first property as splicing detection

score. We introduce a detection function for splicing masks

that takes into account the second and third properties of the

anomalies. We compute the splicing detection value as

d(M) =
max(M)− µM
√∑

x∈I
(x−µM)2

max(|M|)

, (2)

where M is the 2D mask composed by N pixels, µM =
∑

x∈M

x
N

is the average mask value, and max(M) is the

maximum value of M.

In using this score, we better capture the presence of an

anomaly rather than simply thresholding the maximum M

value.

4. Architectural Improvements

Updated Optimizer The original Deep SVDD im-

plementation uses the Adam optimizer [32] for training.

Reddi et al. [33] showed that Adam does not always conver-

gence to the optimal solution. They also propose an alterna-

tive to Adam called Amsgrad, which is empirically shown

to convergence to a better solution than Adam. Specifi-

cally, Amsgrad fixes Adams convergence issue by including

a long term memory of past gradients.

Several works [34, 35, 36] have increased the popularity

of Amsgrad to the extent that extensions to it have also been

proposed [37, 38]. For this reason, we also use Amsgrad as

the optimizer in our implementation.

Smooth Activation Function How to determine the

most efficient activation function for each task is still an

open research problem [39, 40]. Therefore, we also ex-

plored whether the original Deep SVDD [21] activation

function between layers could be improved. Deep SVDD

makes use of the leaky version of the rectified linear unit

(Leaky ReLU), which is defined as

f(x) =

{

0.01x if x < 0

x if x ≥ 0
(3)

Leaky ReLU is continuous on its domain, and its derivative

exists everywhere except for x = 0.

The function and its derivative are monotonic, but they

are not approximate identities near the origin. Despite

Leaky ReLU being broadly used in the machine learning
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community [41, 40, 42], the literature has shown that the

use of non-differentiable activation functions is not an op-

timal choice in some situations [43]. The same has been

shown also by Ying et al. [44], where the authors intro-

duced a novel differentiable graph pooling module which

can learn a hierarchical representation of graphs.

Based on these findings, we change the activation func-

tion between layers from a non-differentiable one to a dif-

ferentiable one. Specifically, we consider the exponential

linear unit (ELU) defined as

f(α, x) =

{

α (ex − 1) if x < 0

x if x ≥ 0
(4)

where α = 1 in our experiments. ELU with α = 1 is con-

tinuous and differentiable. The function and its derivative

are monotonic, and they are approximate identities near the

origin. As we will show in Section 5, this choice leads to

significantly better performance.

5. Experimental Analysis

In order to validate the proposed SatSVDD method and

the different changes made to the Deep SVDD method [21],

we carefully design a set of incremental experiments to test

the final contribution of each change. We report all details

about the used dataset, simulation setup, and the achieved

results.

5.1. Dataset

We use the same dataset used by Yarlagadda et al. [17]

for training and testing our approach. The dataset con-

tains images captured for the Landsat Science program,

more specifically images taken by the Landsat 8 satellite.

The dataset is composed of 230 images with resolution

650 × 650. 30 pristine images are used for training, the

rest are for testing. 50 testing images are pristine, whereas

the remaining 150 contain forgeries. The 150 forged images

were created starting from 50 pristine images, and applying

forgeries of different sizes. Specifically, 50 images contain

a forged region of about 32 × 32 pixel, another 50 images

contain a forged region of about 64× 64 pixel, and another

50 images contain a forged region of about 128×128 pixel.

In terms of image-to-patch splitting policy, we tested

patches of resolution 32 × 32, 64 × 64, and 128 × 128
pixel. For both training and testing we extracted overlap-

ping patches. During training we used a stride of 32 × 32,

whereas during testing we used a stride of 13× 13.

5.2. Experimental Setup

As the proposed method improves over Deep SVDD by

adding a series of different or additional operations, we test

different solutions by enabling or disabling the proposed

modifications. Specifically, we carry out to the following

five experiments:

• Deep SVDD model without any changes, as presented

by Ruff et al. [21].

• Deep SVDD model with the improved optimizer,

which we name SatSVDD-v1.

• Deep SVDD model with the improved activation func-

tion, which we name SatSVDD-v2.

• Deep SVDD model with the improved optimizer and

activation function, which we name SatSVDD-v3.

• Deep SVDD model with the improved optimizer, ac-

tivation function, and detection function, which we

name SatSVDD-v4 in our experiments and is the fi-

nally proposed SatSVDD method.

For the sake of comparison, we also implement the baseline

solution proposed by Yarlagadda et al. [17] for overhead

image splicing manipulation detection and localization. For

every experiment we analyze the results for different patch

sizes, considering both detection and localization scores, in

terms of area under the curve (AUC) for the precision and

recall (P/R) and the receiver operating characteristic (ROC)

curves.

6. Results And Discussion

Figure 6 shows an example of the splicing masks ob-

tained with the different tested solutions on a subset of test

images. It can easily be seen that how the visual quality of

the results gets better as we progressively add the proposed

modifications to our method.

To provide a better insight on the performance obtained

by the proposed solution, Table 1 and Table 2 report the

metrics obtained considering all tested scenarios in terms of

detection and localization. For completeness, we also in-

clude in Figure 7 the ROC and P/R curves obtained with

the different splicing sizes. It is possible to notice that our

final method is significantly better at detecting and local-

izing small anomalies than the baselines. Moreover, the

combined modifications to the Deep SVDD classifier lead

to an increased anomaly detection and localization perfor-

mance. Applying only one modification did not lead to bet-

ter performance compare to the unchanged implementation

of Deep SVDD, but by applying all of them we can achieve

a significant improvement in all the reported metrics. Fi-

nally, Figure 8 shows the histograms of anomaly scores ex-

tracted from pristine and forged patches using SatSVDD-

v3, SatSVDD-v4, Deep SVDD[21] with the baseline [17]

and Deep SVDD[21] with the proposed detection function.

The proposed detection function makes the pristine and

forged image scores distributions more distinguishable,
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Figure 6: From left to right for each row: input image, splicing mask, baseline method [17], Deep SVDD [21], SatSVDD-v1,

SatSVDD-v2, and SatSVDD-v3.

Table 1: AUC scores (%) for the detection task (ROC and P/R metrics). The subscript denotes the manipulation size. Results

that surpass all competing methods are bold. Our final proposed model, SatSVDD-v4, outperforms all previous approaches.

Yarlagadda et al. [17] Ruff et al. [21] SatSVDD-v1 SatSVDD-v2 SatSVDD-v3 SatSVDD-v4

ROC32 77.0 64.7 67.7 69.0 88.3 92.1

ROC64 89.3 69.2 67.7 72.4 95.1 95.9

ROC128 94.2 86.9 86.4 81.0 99.5 99.6

P/R32 79.3 61.3 61.8 65.6 90.4 93.5

P/R64 92.3 64.6 62.5 66.2 96.1 96.8

P/R128 96.0 86.8 82.4 79.2 99.5 99.6

Table 2: AUC scores (%) for the localization task (ROC and P/R metrics). The subscript denotes the manipulation size.

Results that surpass all competing methods are bold. Our final proposed model, SatSVDD-v4, outperforms almost all

previous approaches.

Yarlagadda et al. [17] Ruff et al. [21] SatSVDD-v1 SatSVDD-v2 SatSVDD-v3 SatSVDD-v4

ROC32 91.2 94.2 97.4 97.5 99.7 99.7

ROC64 95.1 86.9 95.5 90.9 99.3 99.3

ROC128 96.1 94.2 93.6 92.7 99.6 99.6

P/R32 11.4 3.7 11.0 8.2 33.3 33.3

P/R64 45.1 4.8 18.9 6.7 52.7 52.7

P/R128 67.0 30.8 33.3 25.4 50.8 50.8
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Figure 7: P/R and ROC curves for the anomaly detection and localization tasks

with a 17% decrease in the overlapping area (from 42 to

35 overlapping images). It can also be observed that in the

overlapping area, the average anomaly scores of manipu-

lated images became more distinguishable compared to the

average anomaly score of non-manipulated images. The

two bottom histograms in Figure 8 show that the proposed

detection function does not improve the splicing detection

if we simply use Deep SVDD. This due to the fact that Deep

SVDD does not properly extract representative features of

pristine patches. Therefore, it is not guaranteed to return a

low anomaly score for patches that do not contain anoma-

lies.

7. Conclusion

In this paper we propose a method for overhead image

forgery detection and localization based on a deep one-class

classifier that works in an anomaly detection framework.

Specifically, we inherit the autoencoder structure proposed

in [17], and adapt it to the Deep SVDD framework, also

proposing a series of additional enhancement steps. As

a matter of fact, applying Amsgrad as an optimizer and

using a smooth activation function between layers signifi-

cantly improved forgery detection performance. Moreover,

the method proposed in the paper outperforms all previous

work by a large margin in small to medium sized forgeries.

Future work will be devoted to study the generalization ca-

pability of the proposed approach to different kinds of satel-

lite imagery, as well as to different overhead image datasets.
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(c) Deep SVDD with the detection function used in [17].

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Anomaly Score

0

2

4

6

8

10

12

14

Nu
m

be
r o

f i
m

ag
es

pristine
manipulated
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Figure 8: Anomaly score histograms with different detection function. Note that SatSVDD-v3 uses the detection function

from [17], whereas SatSVDD-v4 uses our proposed detection function.
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